3.685 \(\int \sec (c+d x) \sqrt [3]{a+b \sec (c+d x)} \, dx\)

Optimal. Leaf size=105 \[ \frac{\sqrt{2} \tan (c+d x) \sqrt [3]{a+b \sec (c+d x)} F_1\left (\frac{1}{2};\frac{1}{2},-\frac{1}{3};\frac{3}{2};\frac{1}{2} (1-\sec (c+d x)),\frac{b (1-\sec (c+d x))}{a+b}\right )}{d \sqrt{\sec (c+d x)+1} \sqrt [3]{\frac{a+b \sec (c+d x)}{a+b}}} \]

[Out]

(Sqrt[2]*AppellF1[1/2, 1/2, -1/3, 3/2, (1 - Sec[c + d*x])/2, (b*(1 - Sec[c + d*x]))/(a + b)]*(a + b*Sec[c + d*
x])^(1/3)*Tan[c + d*x])/(d*Sqrt[1 + Sec[c + d*x]]*((a + b*Sec[c + d*x])/(a + b))^(1/3))

________________________________________________________________________________________

Rubi [A]  time = 0.0965397, antiderivative size = 105, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {3834, 139, 138} \[ \frac{\sqrt{2} \tan (c+d x) \sqrt [3]{a+b \sec (c+d x)} F_1\left (\frac{1}{2};\frac{1}{2},-\frac{1}{3};\frac{3}{2};\frac{1}{2} (1-\sec (c+d x)),\frac{b (1-\sec (c+d x))}{a+b}\right )}{d \sqrt{\sec (c+d x)+1} \sqrt [3]{\frac{a+b \sec (c+d x)}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]*(a + b*Sec[c + d*x])^(1/3),x]

[Out]

(Sqrt[2]*AppellF1[1/2, 1/2, -1/3, 3/2, (1 - Sec[c + d*x])/2, (b*(1 - Sec[c + d*x]))/(a + b)]*(a + b*Sec[c + d*
x])^(1/3)*Tan[c + d*x])/(d*Sqrt[1 + Sec[c + d*x]]*((a + b*Sec[c + d*x])/(a + b))^(1/3))

Rule 3834

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[Cot[e + f*x]/(f*Sqr
t[1 + Csc[e + f*x]]*Sqrt[1 - Csc[e + f*x]]), Subst[Int[(a + b*x)^m/(Sqrt[1 + x]*Sqrt[1 - x]), x], x, Csc[e + f
*x]], x] /; FreeQ[{a, b, e, f, m}, x] && NeQ[a^2 - b^2, 0] &&  !IntegerQ[2*m]

Rule 139

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(e + f*x)^
FracPart[p]/((b/(b*e - a*f))^IntPart[p]*((b*(e + f*x))/(b*e - a*f))^FracPart[p]), Int[(a + b*x)^m*(c + d*x)^n*
((b*e)/(b*e - a*f) + (b*f*x)/(b*e - a*f))^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m]
&&  !IntegerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !GtQ[b/(b*e - a*f), 0]

Rule 138

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((a + b*x)
^(m + 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*(a + b*x))/(b*c - a*d)), -((f*(a + b*x))/(b*e - a*f))])/(b*(m + 1
)*(b/(b*c - a*d))^n*(b/(b*e - a*f))^p), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !Inte
gerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !(GtQ[d/(d*a - c*b), 0] && GtQ[
d/(d*e - c*f), 0] && SimplerQ[c + d*x, a + b*x]) &&  !(GtQ[f/(f*a - e*b), 0] && GtQ[f/(f*c - e*d), 0] && Simpl
erQ[e + f*x, a + b*x])

Rubi steps

\begin{align*} \int \sec (c+d x) \sqrt [3]{a+b \sec (c+d x)} \, dx &=-\frac{\tan (c+d x) \operatorname{Subst}\left (\int \frac{\sqrt [3]{a+b x}}{\sqrt{1-x} \sqrt{1+x}} \, dx,x,\sec (c+d x)\right )}{d \sqrt{1-\sec (c+d x)} \sqrt{1+\sec (c+d x)}}\\ &=-\frac{\left (\sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt [3]{-\frac{a}{-a-b}-\frac{b x}{-a-b}}}{\sqrt{1-x} \sqrt{1+x}} \, dx,x,\sec (c+d x)\right )}{d \sqrt{1-\sec (c+d x)} \sqrt{1+\sec (c+d x)} \sqrt [3]{-\frac{a+b \sec (c+d x)}{-a-b}}}\\ &=\frac{\sqrt{2} F_1\left (\frac{1}{2};\frac{1}{2},-\frac{1}{3};\frac{3}{2};\frac{1}{2} (1-\sec (c+d x)),\frac{b (1-\sec (c+d x))}{a+b}\right ) \sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)}{d \sqrt{1+\sec (c+d x)} \sqrt [3]{\frac{a+b \sec (c+d x)}{a+b}}}\\ \end{align*}

Mathematica [B]  time = 26.0036, size = 7160, normalized size = 68.19 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[c + d*x]*(a + b*Sec[c + d*x])^(1/3),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [F]  time = 0.135, size = 0, normalized size = 0. \begin{align*} \int \sec \left ( dx+c \right ) \sqrt [3]{a+b\sec \left ( dx+c \right ) }\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(a+b*sec(d*x+c))^(1/3),x)

[Out]

int(sec(d*x+c)*(a+b*sec(d*x+c))^(1/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{1}{3}} \sec \left (d x + c\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sec(d*x+c))^(1/3),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^(1/3)*sec(d*x + c), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{1}{3}} \sec \left (d x + c\right ), x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sec(d*x+c))^(1/3),x, algorithm="fricas")

[Out]

integral((b*sec(d*x + c) + a)^(1/3)*sec(d*x + c), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt [3]{a + b \sec{\left (c + d x \right )}} \sec{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sec(d*x+c))**(1/3),x)

[Out]

Integral((a + b*sec(c + d*x))**(1/3)*sec(c + d*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{1}{3}} \sec \left (d x + c\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sec(d*x+c))^(1/3),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^(1/3)*sec(d*x + c), x)